131,240 research outputs found

    Nontrivial critical crossover between directed percolation models: Effect of infinitely many absorbing states

    Full text link
    At non-equilibrium phase transitions into absorbing (trapped) states, it is well known that the directed percolation (DP) critical scaling is shared by two classes of models with a single (S) absorbing state and with infinitely many (IM) absorbing states. We study the crossover behavior in one dimension, arising from a considerable reduction of the number of absorbing states (typically from the IM-type to the S-type DP models), by following two different (excitatory or inhibitory) routes which make the auxiliary field density abruptly jump at the crossover. Along the excitatory route, the system becomes overly activated even for an infinitesimal perturbation and its crossover becomes discontinuous. Along the inhibitory route, we find continuous crossover with the universal crossover exponent ϕ1.78(6)\phi\simeq 1.78(6), which is argued to be equal to ν\nu_\|, the relaxation time exponent of the DP universality class on a general footing. This conjecture is also confirmed in the case of the directed Ising (parity-conserving) class. Finally, we discuss the effect of diffusion to the IM-type models and suggest an argument why diffusive models with some hybrid-type reactions should belong to the DP class.Comment: 8 pages, 9 figure

    Polymer Translocation througha Pore in a Membrane

    Full text link
    We construct a new statistical physical model of polymer translocation through a pore in a membrane treated as the diffusion process across a free energy barrier. We determine the translocation time in terms of chain flexibility yielding an entropic barrier, as well as in terms of the driving mechanisms such as transmembrane chemical potential difference and Brownian ratchets. It turns out that, while the chemical potential differences induce pronounced effects on translocation due to the long-chain nature of the polymer, the ratchets suppress this effect and chain flexibility.Comment: 4 pages, 5 figures, published in Phys. Rev. Lett. 77, 783(1996

    Beyond the Dark matter effective field theory and a simplified model approach at colliders

    Full text link
    Direct detection of and LHC search for the singlet fermion dark matter (SFDM) model with Higgs portal interaction are considered in a renormalizable model where the full Standard Model (SM) gauge symmetry is imposed by introducing a singlet scalar messenger. In this model, direct detection is described by an effective operator m_q \bar{q} q \bar{\chi} \chi as usual, but the full amplitude for monojet + \not E_T involves two intermediate scalar propagators, which cannot be seen within the effective field theory (EFT) or in the simplified model without the full SM gauge symmetry. We derive the collider bounds from the ATLAS monojet + \not E_T as well as the CMS t\bar{t} + \not E_T data, finding out that the bounds and the interpretation of the results are completely different from those obtained within the EFT or simplified models. It is pointed out that it is important to respect unitarity, renormalizability and local gauge invariance of the SM.Comment: 7 pages, 3 figures, version published in Phys. Lett.

    Eta invariants with spectral boundary conditions

    Full text link
    We study the asymptotics of the heat trace \Tr\{fPe^{-tP^2}\} where PP is an operator of Dirac type, where ff is an auxiliary smooth smearing function which is used to localize the problem, and where we impose spectral boundary conditions. Using functorial techniques and special case calculations, the boundary part of the leading coefficients in the asymptotic expansion is found.Comment: 19 pages, LaTeX, extended Introductio
    corecore